
Enhanced Solubility of Polyvinyl Esters in scCO₂ by Means of Vinyl Trifluorobutyrate Monomer

Xuan Liu, † Olivier Coutelier, † Simon Harrisson, † Thierry Tassaing, † Jean-Daniel Marty, *, † and Mathias Destarac*,†

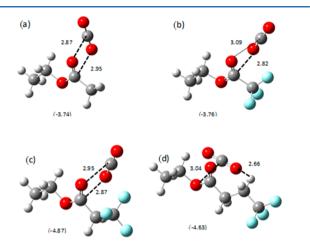
†IMRCP, UMR 5623 CNRS, Université de Toulouse, 118 route de Narbonne, F-31062 Toulouse, Cedex 9, France FISM, UMR 5255 CNRS, Université de Bordeaux, 351 cours de la Libération, 33405 Talence Cedex, France

Supporting Information

ABSTRACT: The novel monomer, vinyl trifluorobutyrate (VTFBu), when polymerized in a controlled fashion by RAFT/MADIX polymerization with a xanthate transfer agent, yields poly(vinyl ester)s with improved solubility in supercritical carbon dioxide. The thermodynamic parameters controlling the solubility of VTFBu/vinyl acetate statistical copolymers are discussed based on ab initio calculations, glass transition temperatures of the copolymers, and surface tension measurements. The enhanced solubility of this new class of CO₂-philic polymer combined with its good chemical stability render it attractive for the preparation of next-generation macromolecular surfactants for the formation of water-scCO₂ emulsions.

he replacement of conventional organic solvents has been identified as a key step in reducing the environmental cost of chemical synthesis, processing, and separations. 1 Supercritical carbon dioxide (scCO₂) is a promising environmentally benign solvent that provides low flammability, toxicity, cost, reactivity at an accessible critical temperature, and pressure (31.1 °C, 73 bar). For most compounds, however, scCO₂ is a poor solvent because of its very low dielectric constant and polarizability: only relatively nonpolar low molecular weight compounds and a few fluorinated or silicone polymers show significant solubility. This drawback can be overcome by the use of water-in-scCO2 or scCO2-in-water emulsions or microemulsions, which allow high concentrations of polar, ionic, and nonpolar molecules to be solubilized within the dispersed and continuous phases. Surfactants are necessary to stabilize these emulsions. For this application, amphiphilic block copolymers are of interest as they offer better anchoring and steric stabilization at interfaces than low molar mass surfactants.

While fluorinated polyacrylates, perfluoroalkylethers and polysiloxanes are the current CO₂-philic materials of choice,² poly(vinyl ester)s combine moderate CO₂-philicity with favorable price and toxicity. Low molecular weight $(M_n =$ 2060 g/mol) poly(vinyl acetate) (PVAc) is soluble at 5 wt % in CO₂ at 374 bar and 25 °C. The cloud point pressure and solubility are strongly dependent on the chain length, however, which limits the usefulness of higher molecular-weight PVAc. 3,4 Different strategies have been used to enhance poly(vinyl ester) solubility, such as modification of the chain end with a CO2philic fluorinated segment⁴ or copolymerization of vinyl acetate (VAc) with a comonomer. In the latter strategy, incorporation


of repulsive or bulky pendant groups increases CO2 solubility by enhancing entropic contributions and decreasing polymerpolymer interactions. A large palette of comonomers are available by varying the vinyl ester group, allowing the incorporation of linear aliphatic or branched structures $^{5-7}$ and fluorinated moieties. $^{8-10}$ Thus, the cloud point pressure (P_c) of a 0.2 wt % solution of PVAc $(M_p = 4000 \text{ g/mol}; P_c =$ 280 bar at 40 °C) falls dramatically to 222 or 177 bar for statistical copolymers containing 1-(trifluoromethyl) vinyl acetate (CF₃VAc/VAc, 33/67, $P_c = 222$ bar at 40 °C)⁹ or vinyl trifluoroacetate (VTFAc/VAc, 50/50, $P_c = 177$ bar at 40 °C). 10 While promising, these monomers still present some obstacles to higher solubility enhancement: (i) as determined by DFT calculations, the monomers reduced polymer-polymer interactions but simultaneously decreased polymer-CO2 interactions, (ii) VTFAc-based polymers are chemically unstable, with a particularly high propensity to hydrolysis, which prevents their use as in water/CO₂ systems, and (iii) further increases in the quantity of fluorinated monomers induced a tendency to form semicrystalline polymer (i.e., to increase polymer-polymer interactions) and therefore lowered polymer solubility. Thus, in order to further increase the solubility of poly(vinyl ester) in scCO2 while retaining its potential as an emulsion stabilizer, comonomers that can increase polymer-CO2 interactions, keep polymer-polymer interactions lower than that of VAc, favor entropy of mixing,

Received: November 19, 2014 Accepted: December 22, 2014 Published: December 31, 2014

ACS Macro Letters Letter

and resist hydrolysis are needed. These considerations prompted us to investigate the effect of inserting one or two CH_2 groups between the carbonyl and CF_3 groups.

Ab initio calculations were first performed on ethyl acetate (EtAc), ethyl trifluoroacetate (EtTFAc), ethyl 3,3,3-trifluoropropionate (EtTFPr) and ethyl 4,4,4-trifluorobutyrate (EtTFBu) model structures. They are representative of the main functional groups of the backbone of PVAc, PVTFAc, polyvinyl trifluoropropionate (PVTFPr), and polyvinyl trifluorobutyrate (PVTFBu). The optimized equilibrium geometries of these model structures and their complexes with $\rm CO_2$ are reported in Figure 1. Electron donor—acceptor (EDA) complexes of $\rm CO_2$

Figure 1. Minimum energy structures at the MP2/aug-cc-pVDZ computational level for (a) $EtAc-CO_2$, (b) $EtTFAc-CO_2$, (c) $EtTFPr-CO_2$, and (d) $EtTFBu-CO_2$ complexes. The stabilization energies (corrected for zero point energy) for each complex are reported in kcal/mol. Bond lengths of interest are displayed in Ångström (dashed lines).

with carbonyl-containing compounds are mainly stabilized by dispersion interactions that are not well described by density functional theory methods. ¹¹ Thus, ab initio methods have been preferred for these calculations.

The minimum energy structure of the CO_2 –EtAc complex corresponds to the unconventional cyclic structure reported recently for acetone— CO_2 complexes, where the CO_2 molecule is found to be parallel to the C=O of the acetate group. In this configuration, a reciprocal EDA interaction occurs between CO_2 and the carbonyl group in which each acts simultaneously as electron donor and acceptor. A similar geometry is observed for CO_2 –EtTFAc that is a model for the CO_2 –PVTFAc interaction. In this case, charge transfer mainly occurs from the oxygen atom of CO_2 to the carbon atom of the EtTFAc carbonyl group.

A similar interaction has been reported for fluorinated acetone. Stabilization energies for both complexes are nearly equal at -3.74 and -3.76 kcal/mol, respectively. While the CO_2 –EtTFPr complex representative of CO_2 –PVTFPr also shows a cyclic structure, the stabilization energy of CO_2 –EtTFPr was significantly improved (-4.87 kcal/mol). Finally, for the CO_2 –EtTFBu complex representative of CO_2 –PVTFBu, CO_2 is found beside the carbonyl group where it interacts with the noncarbonyl oxygen atom. There is also evidence for a cooperative hydrogen bond between a hydrogen atom of the methylene in the α -position of the CF_3 group and an oxygen atom of CO_2 . The stabilization energy of this

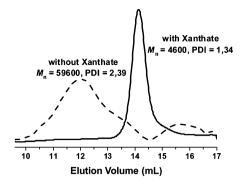
complex is found to be -4.63 kcal/mol. Thus, CO_2 –solute interactions were increased significantly by adding one or two CH_2 groups between the carbonyl and CF_3 groups. Therefore, by inserting vinyl trifluoropropionate (VTFPr) or vinyl trifluorobutyrate (VTFBu) units into a PVAc backbone, we expect polymer–solvent interactions to be favored and CO_2 solubility to be enhanced. Furthermore, the addition of one or two methylene spacers separates the electron-withdrawing CF_3 group from the ester group, improving its hydrolytic stability compared to VTFAc.

Numerous vinyl esters have been synthesized and studied in free-radical polymerization, ^{13,22} but surprisingly, the synthesis of VTFPr and VTFBu monomers has never been described. Vinyl esters are prepared through direct addition of carboxylic acids to terminal alkynes catalyzed by mercury salts, ¹⁴ Ru, Rh, or Ir complexes, ¹⁵ or via transvinylation ¹⁶ of carboxylic acids with vinyl donors by using Hg(II)¹⁷ and Pd(II)^{18,19} materials. The two novel vinyl fluoroalkylates were prepared through transvinylation of fluorinated carboxylic acid (3,3,3-trifluoropropionic acid for VTFPr or 4,4,4-trifluorobutyric acid for VTFBu, Scheme 1, respectively) with VAc by using palladium

Scheme 1. Synthetic Procedure for the Synthesis of Vinyl Trifluorobutyrate (VTFBu)

dichloride (PdCl₂), avoiding the use of toxic mercury salts. When a 2-fold excess of VAc relative 3,3,3-trifluoropropionic acid was used at 60 °C with 5% mol PdCl₂, VTFPr was obtained (39 wt % relative to the starting acid) after 16 h of reaction, as evidenced by NMR. Unfortunately, our attempts to separate VTFPr from VAc failed because the physicochemical characteristics of the two monomers are too similar for efficient purification by distillation or chromatography. VTFBu was obtained using a similar approach from 4,4,4-trifluorobutyric acid and could be separated from VAc by column chromatography (see SI for experimental details and VTFBu characterization). Prior to the study of the phase behavior of VTFBu-containing polymers in scCO₂, it was necessary to evaluate its reactivity in free-radical polymerization.

In order to thoroughly study the structure-solubility relationship of polymers in scCO2, an access to narrowly dispersed polymer samples with controlled number-average molar masses (M_n) is of first importance. Reversible addition fragmentation chain-transfer (RAFT)²⁰ macromolecular design via the interchange of xanthates (MADIX)²¹ polymerization is undoubtedly the most convenient technique for producing well-defined poly(vinyl esters)^{4,8,10} through the introduction of a xanthate chain-transfer agent.²² Therefore, we considered RAFT/MADIX homopolymerization of VTFBu and its statistical copolymerization with VAc (Scheme 2). The RAFT/MADIX homopolymerization of VTFBu was carried out at 60 °C in ethyl acetate with AIBN initiator, using 2mercaptopropionic acid methyl ester O-ethyl dithiocarbonate (XA1) as the xanthate transfer agent (Scheme 2 and experimental section of SI) at a concentration corresponding to a theoretical M_n of 4600 g/mol. A nearly quantitative conversion of 97% was obtained after 24 h of reaction. The experimental $M_{\rm p}$ of the resulting PVTFBu was in excellent agreement with the theoretical M_n , as confirmed by SEC (Table


ACS Macro Letters Letter

Scheme 2. Experimental Procedure for the RAFT/MADIX Synthesis of P(VAc-stat-VTFBu)

1) and 1H NMR spectroscopy (Figure S4 and Table S1), and its dispersity was low ($\mathcal{D}=1.24$). The presence of a characteristic 1H NMR signal at 4.64 ppm corresponding to two protons of the O-ethyl group of the xanthate and the signal of the methine proton of the terminal VTFBu unit at 6.63 ppm (Figure S5 and Table S3 in SI) provided additional evidence of the successful mediation of the polymerization of VTFBu by XA1.

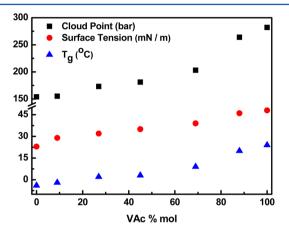
For comparison, a bulk statistical copolymerization of VAc and VTFBu with a 50:50 molar feed ratio was performed with an AIBN concentration of 1 mol % relative to comonomers, with and without XA1. As shown in Figure 2, very distinct SEC profiles were obtained with high M_n (59600 g/mol) and broad molar mass distribution (D = 2.4) without XA1 (see run 8 of Table S1), whereas controlled M_n and a dispersity of 1.34, characteristic of an efficient RAFT/MADIX process, were obtained when using XA1 (see run 4 of Table S1). Building on this result, a library of VTFBu/VAc statistical copolymers of varying composition, targeting an M_n close to 4000 g/mol (see runs 2-6 of Table 1), was synthesized. The control of the polymerizations was evidenced by the excellent match between the theoretical M_n and the experimental M_n obtained by SEC (Table 1) and also NMR (Table S1 in SI). The dispersity remained relatively low and constant (1.31 < D < 1.39)between 9 mol % and 100% of VAc in the copolymer (see Table S1).

In order to have an idea of the microstructure of the formed VTFBu/VAc copolymers, the copolymerization of the two monomers was followed by online ¹H NMR spectroscopy under RAFT/MADIX conditions for two initial comonomer compositions, VTFBu/VAc = 50/50 and 75/25 mol %. The conversion of the two monomers versus time for the two comonomer feeds is represented in Figures S8 and S9 in SI. Then the reactivity ratios were determined by fitting the integrated form of the copolymer composition equation to the

Figure 2. Overlays of SEC chromatograms (RI detection, in THF) for the conventional free-radical copolymerization of VAc and VTFBu with a molar ratio of 50:50 (dashed line) and the corresponding RAFT/MADIX copolymerization (solid line).

monomer feed composition versus conversion data using the visualization of the sum of squares method developed by van den Brink et al., ²³ assuming non-negligible errors in both variables. This procedure gave a point estimate of 1.34 for $r_{\rm VTFBu}$ and 1.16 for $r_{\rm VAc}$, with a 95% joint confidence region spanning the range of 1.21–1.48 for $r_{\rm VTFBu}$ and 1.08–1.26 for $r_{\rm VAc}$ (see Figure S10). After a long induction period ²⁴ (180 and 320 mn for the 50/50 and 75/25 compositions, respectively), the polymerization reached 90% in 3 h for $f_{\rm VTFBu}$ = 0.5 and approximately 6 h for $f_{\rm VTFBu}$ = 0.75. Most importantly, the two monomers are nearly isoreactive, thereby ensuring that negligible compositional drift is present along the polymer chains.

The solubility of the resulting copolymers was evaluated by cloud-point measurement with 0.2 wt % of sample in $scCO_2$ at 40 °C in order to allow a comparison with literature results. A PVAc sample of 4600 g/mol exhibited a cloud point at 282 bar (Table 1, run 7). With gradual incorporation of 12–100 mol % of VTFBu units into the polymer chains (runs 1–6), P_c dramatically decreased from 264 to 154 bar, which means the introduction of VTFBu units into PVAc can greatly improve the solubility of the polymer as expected from the enhanced polymer/CO₂ interaction. Interestingly the fluorine-free copolymer P(VBu₅₀-stat-VAc₅₀) gave P_c = 269 bar under the same conditions, therefore underlying the positive effect on solubility of the fluorinated counterpart (Table 1, run 8).²⁵


Table 1. Experimental Results for the Solubility and Physical Properties of the Vinyl Ester Statistical Copolymers^a

		$M_{\rm n}$ (g	/mol)						
run	sample	NMR ^b	SEC^c	\mathcal{D}^c	$P_{\text{cloud point}}^d$ (bar)	$\Delta P_{\rm cloud}^{e}$ (bar)	contact $angle^f(deg)$	surface tension (mN m^{-1})	$T_{\rm g}$ (°C)
1	PVTFBu	4500	4100	1.24	154	128	99	23	-4
2	P(VTFBu ₉₁ -stat-VAc ₉)	4300	3200	1.37	155	127	91	29	-2
3	P(VTFBu ₇₃ -stat-VAc ₂₇)	4000	4800	1.31	173	109	86	32	2
4	P(VTFBu ₅₅ -stat-VAc ₄₅)	3900	4600	1.34	181	101	80	35	3
5	P(VTFBu ₃₁ -stat-VAc ₆₉)	4500	4800	1.39	203	79	75	39	9
6	P(VTFBu ₁₂ -stat-VAc ₈₈)	4600	5200	1.34	264	18	63	46	20
7	PVAc	4600	4700	1.39	282	0	59	48	24
8	P(VBu ₅₀ -stat-VAc ₅₀)g		4000	1.45	269	13			
9	P(VTFBu ₇₅ -stat-VAc ₂₅)	9900 ^b			213	69			11
10	$P(VBu_{75}\text{-}stat\text{-}VAc_{25})$	9300 ^b			306	24			-14

"See the S1 for experimental details. Determined by 1H NMR analysis in acetone- d_6 . Determined by SEC in tetrahydrofuran (THF) with polystyrene standards. Cloud-point pressure determined from the onset of turbidity with 0.2 wt % of polymer in scCO₂ at 40 °C (standard deviation: ± 3 bar, repeatability ± 5 bar). $^e\Delta P_{cloud} = P_{cloud}(PVAc, run 7) - P_{cloud}(sample)$. Contact angles, reported as average values of six measurements. From ref 25.

ACS Macro Letters Letter

Solubility properties can also be affected by polymer/polymer interactions and entropy of mixing. The contribution of polymer/polymer interactions can be qualitatively estimated from surface tension values (Table 1) obtained from sessile drop experiments. The water contact angle increased from 59° for a pure PVAc sample to 99° for pure PVTFBu. From the empirical formula proposed by Li and Neumann, ²⁶ surface tension values could be extrapolated and are reported in Table 1 and Figure 3.

Figure 3. Experimental results for the P(VAc-stat-VTFBu) copolymers: cloud points, surface tension measurements, and glass transition temperatures vs VAc mol %.

They followed the same trend as the solubility, starting from $48 \text{ mN} \cdot \text{m}^{-1}$ for pure PVAc and reaching a minimum value at $23 \text{ mN} \cdot \text{m}^{-1}$ for pure PVTFBu. Therefore, weaker polymer/polymer interactions (associated with lower surface tension) are also responsible for the increase of solubility observed. Glass transition temperatures ($T_{\rm g}$) of the copolymers decreased from 24 °C for homo-PVAc to -4 °C for homo-PVTFBu (Figure 3), suggesting that entropy of mixing is also involved.

An interesting trend can be deduced from the comparison of these results with those obtained for VTFAc/VAc copolymers.8 Although ab initio calculations showed enhanced polymer-CO₂ interactions with VTFBu compared to VTFAc monomer units, cloud point pressures of VTFAc/VAc statistical copolymers were systematically slightly lower than those of their VFTBu counterparts for compositions containing up to 50 mol % fluorinated comonomer:8 the solubility of P(VTFBu₅₀ $stat-VAc_{50}$) and P(VTFAc₅₀- $stat-VAc_{50}$) was thus equal to 181 and 177 bar, respectively. This may be because VTFAc induces lower polymer-polymer interactions compared to VTFBu in the copolymer, as demonstrated by surface tension calculations. For these two polymers surface tensions were 35 and 33 mN· m⁻¹, respectively. This effect counterbalances and slightly surpasses other thermodynamic contributions such as polymer-CO₂ interactions and entropy of mixing. Indeed, T_g of all VTFBu-based copolymers are lower than the corresponding VTFAc-based copolymers, which means the entropy of mixing is not the main feature affecting solubility.8

In contrast to VTFAc/VAc copolymers, which become partially insoluble in scCO_2 at about 50% VTFAc due to their semicrystalline character, the amorphous character of VTFBu/VAc copolymers at all compositions allowed the preparation of polyvinyl esters with enhanced solubility (154 bar) in scCO_2 when more than 70% of VTFBu was incorporated in the copolymer. This solubility approaches that of Krytox

perfluoropolyethers of similar $M_{\rm p}$ ($P_{\rm c}$ = 110 bar for $M_{\rm p}$ = 4800 g/mol)²⁵ and is similar to that of monomethacrylateterminated PDMS of $M_n = 10000 \text{ g/mol.}^{25}$ It should be noted that PVBu homopolymer at 3000 g/mol and 50/50 VAc/VBu copolymer at 4000 g/mol give much higher cloud points at 241 and 269 bar, respectively.²⁵ Furthermore, the effect of increasing molecular weight on the solubility of the VTFBu/ VAc copolymers is relatively small, with a cloud point of 213 bar obtained for a 9900 g/mol 75/25 VTFBu/VAc copolymer (c.f. 306 bar for the corresponding VBu/VAc copolymer). Advantageously, like PVAc and PVBu, PVTFBu is much more stable toward methanolysis and hydrolysis (see Figures S11 and S12 in SI) than PVTFAc. Therefore, this new VTFBu monomer is a promising building block for the preparation of macromolecular surfactants with enhanced solubility and chemical stability for heterogeneous processes involving water and scCO₂.

In summary, VTFBu was synthesized for the first time and polymerized in a controlled manner by RAFT/MADIX using a xanthate reversible transfer agent. PVTFBu homopolymer and random VTFBu/VAc copolymers of controlled $M_{\rm n}$ and low dispersities were obtained. The solubility of PVTFBu in scCO₂ was shown to be greatly enhanced compared to PVAc. The 128 bar decrease in cloud point pressure could be rationalized by a decrease of polymer—polymer enthalpic interactions and an increase of both polymer—CO₂ interactions and entropy of mixing. The synthesis of PVTFBu-containing amphiphilic block copolymers and the study of their behavior at water/scCO₂ interfaces will be the subject of forthcoming studies.

ASSOCIATED CONTENT

S Supporting Information

Detailed experimental procedures and additional experimental results, including NMR spectra of VTFBu, crude PVTFBu, and P(VTFBu-stat-VAc) samples. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Authors

* E-mail: jean-daniel.marty@univ-tlse3.fr.

*E-mail: destarac@chimie.ups-tlse.fr.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors thank the China Scholarship Council (CSC) for Ph.D. funding of X.L. and Dr. S. Camy for her kind support for accessing the variable volume cell for the determination of cloud point pressures. Pr. E. Drockenmüller is gratefully acknowledged for helpful discussions on the synthesis of vinyl ester monomers.

REFERENCES

- (1) Anastas, P. T.; Kirchhoff, M. M. Acc. Chem. Res. 2002, 35, 686-694.
- (2) Girard, E.; Marty, J.-D.; Destarac, M. In *Handbook of Fluoropolymer Science and Technology*; Dennis, W. S., Scott, T. I., Suresh, S. I., Eds.; Wiley-VCH: New York, 2014.
- (3) Shen, Z.; McHugh, M. A.; Xu, J.; Belardi, J.; Kilic, S.; Mesiano, A.; Bane, S.; Karnikas, C.; Beckman, E. J.; Enick, R. *Polymer* **2003**, *44*, 1491–1498.
- (4) Girard, E.; Tassaing, T.; Marty, J. D.; Destarac, M. Polym. Chem. 2011, 2, 2222-2230.

ACS Macro Letters

(5) Park, E. J.; Richez, A. P.; Birkin, N. A.; Lee, H.; Arrowsmith, N.; Thurecht, K. J.; Howdle, S. M. *Polymer* **2011**, *52*, 5403–5409.

- (6) Lee, H.; Pack, J. W.; Wang, W.; Thurecht, K. J.; Howdle, S. M. *Macromolecules* **2010**, 43, 2276–2282.
- (7) Birkin, N. A.; Arrowsmith, N. J.; Park, E. J.; Richez, A. P.; Howdle, S. M. *Polym. Chem.* **2011**, *2*, 1293–1299.
- (8) Girard, E.; Tassaing, T.; Camy, S.; Condoret, J.-S.; Marty, J.-D.; Destarac, M. J. Am. Chem. Soc. 2012, 134, 11920–11923.
- (9) Girard, E.; Tassaing, T.; Ladavière, C.; Marty, J.-D.; Destarac, M. Macromolecules 2012, 45, 9674–9681.
- (10) Girard, E.; Liu, X.; Marty, J.-D.; Destarac, M. Polym. Chem. **2014**, 5, 1013–1022.
- (11) San-Fabián, E.; Ingrosso, F.; Lambert, A.; Bernal-Uruchurtu, M. I.; Ruiz-López, M. F. Chem. Phys. Lett. **2014**, 601, 98–102.
- (12) Altarsha, M.; Ingrosso, F.; Ruiz-Lopez, M. F. ChemPhysChem **2012**, 13, 3397-3403.
- (13) Helmut, R. Ullmann's Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: New York, 2000.
- (14) Hudrlik, P. F.; Hudrlik, A. M. J. Org. Chem. 1973, 38, 4254–4258.
- (15) Nakagawa, H.; Okimoto, Y.; Sakaguchi, S.; Ishii, Y. Tetrahedron Lett. 2003, 44, 103–106.
- (16) Ziriakus, J.; Zimmermann, T. K.; Pothig, A.; Drees, M.; Haslinger, S.; Jantke, D.; Kuhn, F. E. Adv. Synth. Catal. 2013, 355, 2845–2859.
- (17) Murray, R. E.; Lincoln, D. M. Catal. Today 1992, 13, 93-102.
- (18) Ketterling, A. A.; Lisitsyn, A. S.; Nosov, A. V.; Likholobov, V. A. Appl. Catal. **1990**, 66, 123–132.
- (19) Allaoua, I.; Goi, B. E.; Obadia, M. M.; Debuigne, A.; Detrembleur, C.; Drockenmuller, E. *Polym. Chem.* **2014**, *5*, 2973–2979.
- (20) Barner-Kowollik, C., Ed. In Handbook of RAFT Polymerization; Wiley-VCH: New York, 2008.
- (21) Taton, D.; Destarac, M.; Zard, S. Z. In *Handbook of RAFT Polymerization*; Barner-Kowollik, C., Ed.; Wiley-VCH: New York, 2008; chap.10, p373.
- (22) Harrisson, S.; Liu, X.; Ollagnier, J.-N.; Coutelier, O.; Marty, J.-D.; Destarac, M. *Polymers* **2014**, *6*, 1437–1488.
- (23) Van den Brink, M.; Van Herk, A. M.; German, A. L. J. Polym. Sci., Part A: Polym. Chem. 1999, 37, 3793-3803.
- (24) Pound, G.; McLeary, J. B.; McKenzie, J. M.; Lange, R. F. M.; Klumperman, B. *Macromolecules* **2006**, *39*, 7796–7797.
- (25) Lee, K.; Terry, E.; Zong, M.; Arrowsmith, N.; Perrier, S.; Thurecht, K. J.; Howdle, S. M. J. Am. Chem. Soc. 2008, 130, 12242–12243.
- (26) Li, D.; Neumann, A. W. J. Colloid Interface Sci. 1992, 148, 190–